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Abstract

In this article we analyze the lattice Boltzmann equation (LBE) by using the asymptotic expansion technique. We
first relate the LBE to the finite discrete-velocity model (FDVM) of the Boltzmann equation with the diffusive scaling.
The analysis of this model directly leads to the incompressible Navier–Stokes equations, as opposed to the compressible

Navier–Stokes equations obtained by the Chapman–Enskog analysis with convective scaling. We also apply the asymp-
totic analysis directly to the fully discrete LBE, as opposed to the usual practice of analyzing a continuous equation
obtained through the Taylor-expansion of the LBE. This leads to a consistency analysis which provides order-by-order
information about the numerical solution of the LBE. The asymptotic technique enables us to analyze the structure of
the leading order errors and the accuracy of numerically derived quantities, such as vorticity. It also justifies the use of
Richardson�s extrapolation method. As an example, a two-dimensional Taylor-vortex flow is used to validate our anal-
ysis. The numerical results agree very well with our analytic predictions.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Historically the lattice Boltzmann equation (LBE) is originated from the lattice gas cellular automata
(LGCA) [13,12]. The lattice gas cellular automata represent an innovative and yet highly unconventional
methodology to simulate physical systems which can or cannot be represented by partial differential
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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equations (PDEs). The LGCA methodology is deemed appropriate in those areas where PDE is not an ade-
quate description, e.g., artificial life or language theory (cf. [22]). However, in computational fluid dynamics
(CFD), a well-established area in which the solutions of a set of PDEs – the Navier–Stokes equations – are
the primary objective, the novel and unconventional LGCA methodology has met with severe criticisms
because, not only is the method unconventional, but also it has not been systematically subjected to the
rigorous (numerical) analysis like other conventional CFD methods based on discretizations of the Na-
vier–Stokes equations. Apparently, the historic connection to LGCA is a factor hampering a wider accep-
tance of the lattice Boltzmann method (LBM), in spite of the evidence accumulated so far has shown that
the method is not only valid, but also competitive in some circumstances (such as complex fluid flows
through porous media (cf. [37]) and non-spherical particulate suspensions in fluid flows [40,38,39]). Never-
theless, similar to LGCA, questions concerning the consistency, stability, and convergence of LBM have
been unanswered or answered unsatisfactorily.

In this article we intend to fill gaps the mathematical analysis of the lattice Boltzmann equation in the
following two aspects. The first is to establish the direct connection between the lattice Boltzmann equation
and the classical kinetic theory (without referring to LGCA). It can be demonstrated that the lattice Boltz-
mann equation is in fact a finite difference form of the finite discrete-velocity model of the Boltzmann equa-
tion in a particular scaling. And the second is to provide an asymptotic analysis of the lattice Boltzmann
equation so that the mathematical properties (consistency) of the lattice Boltzmann method can be well
illustrated.

An asymptotic expansion is a well-established method in the theory of ordinary differential equations
and is also frequently used for PDEs in connection with Richardson�s extrapolation or deferred correction
methods (cf. review in [26]). We shall demonstrate that the lattice Boltzmann method is by no means special
as far as its analysis is concerned: it can be analyzed in the same fashion as other traditional numerical
schemes, such as the schemes for the Laplace or heat equations [26]. In particular, we can obtain the spatial
and temporal accuracy of the lattice Boltzmann equation, analyze the accuracy of quantities like vorticity
which are not directly available as velocity moments, justify the use of extrapolation techniques, and gain
accurate and quantitative information about the structure of the leading order error.

Classically, the Chapman–Enskog (CE) expansion is employed to analyze the consistency of LBE. Start-
ing point for the CE analysis is the usual (convective) scaling, i.e., Dx � Dt, which is subsequently combined
with a two-time scale expansion to derive the hydrodynamic equations. The resulting macroscopic equa-
tions describe compressible flows in the faster time scale and diffusive effects in the slower one. Eventually,
the equations can be related to the compressible Navier–Stokes system from which the incompressible
equations are obtained in another limiting process [12,2,6,7,18,19,47].

In contrast to this traditional approach, we advocate the diffusive scaling as a mathematical alternative to
analyze the lattice Boltzmann equation. The diffusive scaling, developed by Sone (cf. [43]), is well known in
kinetic theory and has been used to establish a direct connection between the Boltzmann equation and the
incompressible Navier–Stokes equations [9,1,29,14,15]. In particular, the diffusive scaling is the natural
choice if the LBE is viewed purely as a numerical method to solve the incompressible Navier–Stokes equa-
tion. In this case, compressibility effects are considered as numerical effects and it suffices to consider the
slower (diffusive) time scale in the analysis. Thus the technical advantages of the advocated method are two-
fold. First, only a single time scale expansion is necessary and it is simpler than a two-scale expansion be-
cause the expansion coefficients and the corresponding equations depend on one variable fewer. Second, the
expansion coefficients depend directly on the aspired solution of the incompressible Navier–Stokes problem
and not on the solution of a different problem (the compressible equation). Having this direct dependence,
it is straight forward to relate the numerical solution to the exact solution, for example, to obtain error
estimates.

An obvious difference between the classical Chapman–Enskog analysis and our approach here is the
relation Dt � Dx2 for the time step. This assumption is natural if we restrict ourselves to flows which are
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slow compared to the particle velocity defined in the LBE and which are interpreted in the slow (diffusive)
time scale. Note, however, that the assumption does not alter the lattice Boltzmann algorithm. It is merely a
different scaling which simplifies the analysis of the underlying LBE scheme. In order to make this point
more precise, let us think of a flow through a channel of length L with typical velocity U. In the classical
scaling (where Dt � Dx), U has to be a small quantity (of the order of Dx) which reflects the low Mach num-
ber assumption. In particular, the time required for a volume of fluid to traverse the channel is proportional
to L=U ¼ Oð1=DxÞ and thus diverges for Dx ! 0. With a time step Dt � Dx in the simulation, a typical num-
ber of time steps required for this fluid displacement is Oð1=Dx2Þ. In contrast to the classical scaling where
flow speed and simulation time converge to zero and infinity, respectively, for Dx ! 0, we avoid technical
difficulties by using a scaling in which the flow velocity U is of order one so that the macroscopic time L/U
is also of order one. Due to the relation Dt � Dx2, however, the required number of time steps is again of
order Oð1=Dx2Þ reflecting the fact that the underlying lattice Boltzmann algorithm is unchanged.

With the exception of [23], the diffusive scaling has not been applied to analyze the lattice Boltzmann
equation. However, it is important to emphasize that the our analysis differs from that in [23] because
we do not approximate the discrete lattice Boltzmann equation with a continuous equation through Taylor
expansion, as in [23]. In fact, the expansion used here implicitly assumes that the discrete solution can be
obtained by restricting a smooth function to the grid which breaks down if the numerical solution exhibits
initial or boundary layers. In the modified equation analysis, the same assumption is used and it has been
shown, for example in [16,5], that it lacks mathematical justification. Since our goal is to develop a method
which will enable us to analyze the lattice Boltzmann method in combination with boundary conditions
[25], coupling conditions for different meshes [42] and in the presence of initial layers [4], we circumvent
this technical problem and apply an asymptotic expansion directly to the discrete lattice Boltzmann equa-
tion itself, in the spirit of finite-difference analysis [45,46,33].

We conclude the introduction with an outline of the article. In Section 2 we provide a concise account of
the kinetic origin of the lattice Boltzmann equation. In Section 3 we introduce a coordinate-free notation
and the assumptions on the structures of the discrete velocity set and the collision operator. We consider a
very general situation including the models in two or three dimensions with multiple-relaxation-time
(MRT) collision operators [10], of which the Bhatnagar–Gross–Krook (BGK) [3] collision operator is
merely a special case. In Section 4 we discuss the asymptotic analysis of the finite discrete-velocity model
(with continuous space x and time t), which facilitates the analysis of the lattice Boltzmann equation. De-
tails of the derivations are deferred to Appendix A. In Section 5, we present the asymptotic analysis of the
lattice Boltzmann equation. We show that the lattice Boltzmann approximation to the incompressible

Navier–Stokes equations is at least second-order accurate in space and first-order accurate in time. In Sec-
tion 6 we consider in detail a rotating flow in two dimensions as a test case to verify our analysis. Finally, in
Section 7 we summarize our results and conclude the paper. The Appendices contain the technical details of
the asymptotic analysis and provides examples for lattice Boltzmann models which satisfy the assumptions
of our general approach in Section 3.
2. Kinetic origin of the lattice Boltzmann equation

We consider the finite discrete-velocity model (FDVM) of the Boltzmann equation with the finite dis-
crete-velocity set V ¼ fc0; . . . ; cNg:
otfi þ ci � $fi ¼ J i; i ¼ 0; . . . ;N ; ð1Þ

where the function fi(t, x) = f(t, x, ci) is the single particle (mass) density distribution function at time
t 2 [0, T] and position x 2 X. While the left-hand side of Eq. (1) describes the transport of a particle, the
right-hand side describes the change of fi due to collisional interactions among the particles. With the
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diffusive scaling x ! x/� and t! t/�2, we concentrate on macroscopic processes (large space scale) over very
long time intervals (slow time scale). Eq. (1) becomes
�2otfi þ �ci � $fi ¼ J i; i ¼ 0; . . . ;N . ð2Þ

Dividing Eq. (2) by �2 and integrating it along characteristics, we obtain
fiðt þ Dt; xþ ciDt=�Þ ¼ fiðt; xÞ þ
1

�2

Z Dt

0

J iðt þ s; xþ cis=�Þds.
By using the space and time step size according to the diffusive scaling Dt = �2 and Dx = �, and approximat-
ing the integral by the rectangle rule with the integrand evaluated at the left point of the interval, we arrive
at
fiðt þ Dt; xþ ciDxÞ � fiðt; xÞ þ J iðt; xÞ. ð3Þ

We can transform Eq. (3) into a simple algorithm on a spatial lattice X which is invariant under ci-trans-
lations, i.e.,
ci þX ¼ X; i ¼ 0; . . . ;N .
If we use f̂ iðk; jÞ, with k 2 N0 :¼ f0; 1; 2; . . .g and j 2 X, to approximate the value fi(kDt, jDx), then we ob-
tain the lattice Boltzmann evolution using Eq. (3) [18,19]:
f̂ iðk þ 1; j þ ciÞ ¼ f̂ iðk; jÞ þ Ĵ iðk; jÞ. ð4Þ

Of course, one could derive variants of the lattice Boltzmann equation by using different discretizations of
Eq. (2) than those described above, but this is not our objective here. The point of this brief derivation is to
demonstrates the explicit connection between the lattice Boltzmann equation (4) and the finite discrete-
velocity model equation (1) with the diffusive scaling. Moreover, it already indicates a fundamental
difficulty in the analysis: since the lattice Boltzmann equation (4) can be viewed as a discretization of the
singularly perturbed FDVM equation (2) with coupled parameters Dt = Dx2 = �2, it is clear that, in the lim-
it of �! 0, Eq. (4) does not approximate the kinetic equation (1) from which it has been derived, because
the structure of this equation changes qualitatively in the limit (in lowest order it reduces to an algebraic
equation Ji = 0). Therefore, the analysis of the lattice Boltzmann equation (4) is inevitably related to the
asymptotic analysis of Eq. (1) with appropriate scalings.

Usually, the Chapman–Enskog analysis combined with a Taylor expansion is used to analyze the lattice
Boltzmann equation (4) and it is well known that the averaged particle velocity approximates solutions of
the incompressible Navier–Stokes equation in a limit of low Mach number. In this article we would like to
demonstrate that this result can also be obtained with a straightforward asymptotic expansion of Eq. (4).
Similar expansions have been widely applied to numerical schemes for solving ordinary and partial differ-
ential equations, for example, to derive and improve the order of consistency. In particular, the asymptotic
analysis also allows us to study an algorithm with boundary or coupling conditions, or initial layers. By
embedding the analysis into a framework which is generally applicable to finite difference schemes, we hope
to clarify and improve the numerical analysis of lattice Boltzmann method.
3. Structural assumptions

3.1. Coordinate free notation

For the sake of concreteness and simplicity, we shall consider collision operators with a particular
structure which may not contain all possible realizations of lattice Boltzmann models. Nevertheless, the
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techniques described here are fairly general. We should restrict ourselves to athermal LBE models (without
energy conservation). We also stress that the notation to be used in what follows is coordinate free for
velocity-dependent functions. If V ¼ fc0; . . . ; cNg � Rd is the set of d-dimensional discrete velocities, we
introduce the Euclidean vector space F of real valued functions f : V ! R. Most of the lattice Boltzmann
literature relies on the choice of a canonical basis in F given by the Kronecker functions dci 2
F; dciðcjÞ ¼ dij. In this basis, a function f 2 F has the representation
f ðvÞ ¼
XN
i¼0

f ðciÞdciðvÞ
with coordinates fi = f(ci). Obviously, the formulation of the lattice Boltzmann equation (4) and its contin-
uous counterpart (1) is based on these coordinates.

Another useful basis is given by polynomials f/0; . . . ;/Ng � F which are, for example, orthogonal with
respect to the standard scalar product on F,
hf ; gi ¼
XN
i¼0

f ðciÞgðciÞ; f ; g 2 F.
In this basis, a function f has the representation
f ðvÞ ¼
XN
i¼0

hf ;/ii/iðvÞ.
Now the coordinates are (velocity) moments of f. For example, /0(v) = 1 and /1(v) = vx, then
q ¼ hf ;/0i ¼
XN
i¼0

f ðciÞ and jx ¼ hf ;/1i ¼
XN
i¼0

f ðciÞcix
are averaged mass density and x-momentum, respectively. Consequently, if the lattice Boltzmann evolution
is formulated in a polynomial basis, one obtains equations for velocity moments – so called moment sys-
tems [10,24]. However, to avoid an a priori choice for a particular basis, we use as much as possible a coor-
dinate-free notation which has several advantages. First, coordinate-free notations emphasize the essentials.
Second, this notation is so general that it is model-independent, thus the analysis clearly carries over to all
models. And finally, the notation is compatible with continuous velocity sets V so that the connection to
well-established results in classic kinetic theory is immediate (only the scalar product Æ Æ , Æ æ has to be re-
placed by the L2 scalar product).

To cast Eq. (2) in a coordinate-free notation, we introduce the velocity multiplication operators
Va : F ! F defined by (Vaf)(v) = vaf(v), where the Greek subscripts a, b, . . . , are always used to denote
the Cartesian coordinates 1, . . . , d as opposed to the Roman subscripts i, j, . . . , labeling discrete velocities.
Note that Va1 is the function v ´ va. For abbreviation, we consider {Va ja = 1,2, . . . , d} as components of a
vector operator V = (V1, . . . , Vd)

T, where the superscript T indicates the transpose operation. Eq. (2) can be
concisely written as an equation for the function f : Rþ

0 � X�V ! R defined by f(t, x, ci) := fi(t, x),
otf þ 1

�
V � $f ¼ 1

�2
Jðf Þ. ð5Þ
As previously indicated, the above equation differs from the hydrodynamic scaling of the Boltzmann equa-
tion, in which the small parameter (the Knudsen number) � only appears inversely in front of the collision
term.
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3.2. The collision operator and the equilibrium distribution

The collision operator J : F ! F in (5) will be chosen of relaxation type
1 We
Jðf Þ ¼ A½f ðeqÞðf Þ � f �;

where A : F ! F is a linear mapping, and f ðeqÞ : F ! F is the so-called equilibrium distribution. The
idea to use collision operators of relaxation type in the lattice Boltzmann equation was proposed in previ-
ous works [20,21,35,10]. In the multiple-relaxation-time (MRT) or generalized lattice Boltzmann equation
[10], the operator A is explicitly constructed with an orthonormal basis in F such that A is diagonalized in
this basis. Obviously the MRT approach is more flexible in tuning some physical parameters (e.g., Prandtl
number Pr), and has been shown to be numerically more stable [28] than the popular lattice BGK collision
operator [41,6], of which A is a multiple of the identity operator. In what follows, we shall use the multiple-
relaxation-time (linear) collision operator A which is essentially determined by certain algebraic properties
reflecting the conservation laws and associated symmetries. To avoid restriction to any particular model, we
shall prescribe the criteria on f (eq) and A which are necessary for the subsequent analysis. Examples for lat-
tice Boltzmann models satisfying these assumptions are given in the Appendices.

The first assumption is that the velocity set V is symmetric, i.e.,
V ¼ �V ð6Þ

which allows us to define even and odd functions (cf. Appendix A.1). We call a function even, if
f(�ci) = f(ci) and odd if f(�ci) = �f(ci). Second, we assume the existence of an even function f � 2 F for
which the lowest order moments have the same isotropy structure as the classical Maxwellian
MðvÞ ¼ 1

ð2phÞ
d
2

exp � v2

2c2s

� �
; v 2 Rd ;
where h ¼ c2s is the scaled temperature, and the parameter cs ¼
ffiffiffi
h

p
is the sound speed in a gas close to equi-

librium described by M(v). Specifically, we assume
h1; f �i ¼ 1; ð7aÞ
h1;VaVbf �i ¼ c2sdab; ð7bÞ
h1;VaVbVcVdf �i ¼ jc4s ðdabdcd þ dacdbd þ daddbcÞ; ð7cÞ
where j 6¼ d/(d + 2) [see Eq. (10)]. The condition on j excludes the D2Q61 model on a two-dimensional
(2D) triangular lattice (without zero velocity) from our considerations for which it is known that the Na-
vier–Stokes equation is obtained only after redefining the pressure. For the D2Q7 model on a 2D triangular
lattice, the D2Q9 model on a 2D square lattice and the D3Q15 model on a three-dimensional (3D) cubic
lattice, we find j = 1 in accordance with the values of the Maxwellian fourth order moments. For the D2Q8
model on a 2D square lattice (without zero velocity), we find j = 5/9. Based on f*, we define the equilibrium
distribution
f ðeqÞðf Þ ¼ F ðeqÞðh1; f i; h1;Vf iÞ;

which, for the sake of convenience, we split into a linear and a quadratic part:
f ðeqÞðf Þ ¼ f LðeqÞðf Þ þ f QðeqÞðf ; f Þ. ð8Þ

The linear part is assumed of the form
use notation DdQq for a q-velocity model in d dimensions.
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f LðeqÞðf Þ ¼ F LðeqÞðh1; f i; h1;Vf iÞ; F LðeqÞðq; uÞ ¼ ðqþ c�2
s u � VÞf �
so that f * = F LðeqÞ(1, 0) and, using (7a), (7b),
h1; F LðeqÞðq; uÞi ¼ q; ð9aÞ
h1;VF LðeqÞðq; uÞi ¼ u; ð9bÞ
h1;V	 VF LðeqÞðq; uÞi ¼ c2sqI. ð9cÞ
Here and in the following, I denotes the identity operator. To define the quadratic part, we first introduce
the notations for the symmetric tensor product among two vectors a and b:
ða	 bÞab ¼
1

2
ðaabb þ abbaÞ;
and the :-product between two matrices A and B,
A : B ¼
Xd
a;b¼1

AabBab.
This allows us to write
f QðeqÞðf ; gÞ ¼ F QðeqÞðh1;Vf i; h1;VgiÞ; F QðeqÞðu;wÞ ¼ ðu	 wÞ : Pf �;
where
Pab ¼
1

2jc4s
VaVb � c2sdab þ

j� 1

ðd þ 2Þj� d
ðjVj2 � dc2s Þdab

� �
. ð10Þ
Note that the denominator [(d + 2)j � d] leads to the constraint on the parameter j 6¼ d/(d + 2). The struc-
ture of P combined with (7b), (7c) yields
h1; F QðeqÞðu;wÞi ¼ 0; ð11aÞ
h1;VF QðeqÞðu;wÞi ¼ 0; ð11bÞ
h1;V	 VF QðeqÞðu;wÞi ¼ u	 w. ð11cÞ
Next, we list the conditions on the linear operator A : F ! F.

(i) hAf ; gi ¼ hf ;Agi 8f ; g 2 F;
(ii) A is positive semi-definite;
(iii) the even and odd functions form invariant subspaces of A
(iv) {1, v1, . . . , vd} generates the kernel of A;

(v) AðV f �Þ ¼ jc2s
m V f �; where V ¼ V	 V� 1

d jVj
2
I.

To give a specific example, we denote with Q the orthogonal projection onto the kernel of A and with
P := I � Q the projection on the complement. Then A ¼ 1

sP with s ¼ m=ðjc2s Þ is a particular choice which sat-
isfies all conditions (i) to (v). Since f (eq)(f) � f is orthogonal to the kernel ofA, which is easily checked by com-
puting the scalar products with the elements of the kernel and observing (9) and (11), we have for any s > 0,
1
P½f ðeqÞðf Þ � f � ¼ 1 ðQþ PÞ½f ðeqÞðf Þ � f � ¼ 1 ½f ðeqÞðf Þ � f �.
s s s
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Consequently, A ¼ 1
sP is equivalent to the so-called BGK collision operator Jðf Þ ¼ 1

s ½f ðeqÞðf Þ � f �, which is
the most popular LBE model [41,6,7,47] and is only a special case considered here.
4. Asymptotic analysis of FDVM with diffusive scaling

We shall demonstrate the use of the diffusive scaling to recover the incompressible Navier–Stokes equa-
tions as a limiting system. We begin with
�2otf� þ �V � $f� ¼ A½f ðeqÞðf�Þ � f�� ð12Þ

on a spatially periodic domain X. (Note that f� indicates the dependence of f on the perturbative parameter
� which is a continuous variable. It should not be confused with fi in which the subscript i is an integer index
for discrete velocities.) Because we only consider the incompressible regime, we specify the following initial
values:
f�jt¼0 ¼ F ðeqÞð1; ��uÞ; $ � �u ¼ 0. ð13Þ

The above initial conditions guarantee that, initially, the density Æ1, f�jt=0æ = 1 is a constant and that the
velocity �~uðxÞ ¼ h1;Vf�jt¼0i is small compared to the particle speed in the Boltzmann equation which is
Oð1Þ as � ! 0.

To investigate the asymptotic behavior of the initial value problem (12) with initial conditions (13) in the
limit of �! 0, we introduce a regular expansion
f� ¼ f ð0Þ þ �f ð1Þ þ �2f ð2Þ þ � � �

with f (0) = f * = F (eq)(1, 0). Note that the initial values for the expansion coefficients f (k) are
f ð1Þjt¼0 ¼ F LðeqÞð0; �uÞ; ð14aÞ
f ð2Þjt¼0 ¼ F QðeqÞð�u; �uÞ; ð14bÞ
f ðkÞjt¼0 ¼ 0; k P 3. ð14cÞ
Substituting the expansion of f� into (12) and setting f (k) = 0 for k < 0, we obtain in order �k+2, k P �2, the
following equation:
otf ðkÞ þ V � $f ðkþ1Þ ¼ A f LðeqÞðf ðkþ2ÞÞ � f ðkþ2Þ þ
X

nþm¼kþ2

f QðeqÞðf ðnÞ; f ðmÞÞ
" #

. ð15Þ
By induction, we can determine the expansion coefficients f (1), f (2), . . . from the above relations. More pre-
cisely, Eq. (15) determines f (k+2) in terms of the lower order coefficients f (l), l 6 k + 1, which have been ob-
tained in previous steps. The procedure starts with k = �1, f (�1) = 0 and f (0) = f * to obtain f (1). The
general procedure can be explained as follows.

We note that Eq. (15) is of the general form
Az ¼ b; ð16Þ

where the right-hand side, b, contains the lower order coefficients:
b ¼ otf ðkÞ þ V � $f ðkþ1Þ � A
X

nþm¼kþ2

f QðeqÞðf ðnÞ; f ðmÞÞ; ð17Þ
and the unknown quantity z is the sum of terms involving f (k+2),
z ¼ f LðeqÞðf ðkþ2ÞÞ � f ðkþ2Þ.
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Since the vector space F is finite dimensional, Eq. (16) is a finite linear system and the solvability theory
only involves basic linear algebra. Keeping in mind that A has a non-trivial kernel, we conclude that the
image of A is not the whole space F. In particular, Eq. (16) can only be solvable under certain restrictions
on b. To formulate these restrictions, we note that if z solves Eq. (16) and if y is any element of the kernel,
then
0 ¼ hAy; zi ¼ hy;Azi ¼ hy; bi
so that b has to be orthogonal to the kernel. In view of Eq. (17), the orthogonality conditions lead to a
constraint on the moments q(k) = Æ1, f (k)æ, u(k) = Æ1, Vf (k)æ, and p(k) = Æ1, V 	 Vf (k)æ:
otq
ðkÞ þ $ � uðkþ1Þ ¼ 0; ð18aÞ

otu
ðkÞ þ $ � pðkþ1Þ ¼ 0. ð18bÞ
If these conditions are satisfied, and since b is in the orthogonal complement of the kernel which is equal to
the image of A, we can uniquely determine the solution z of the system (16) which is orthogonal to the ker-
nel. For notational convenience, we denote the inverse defined on the image of A by A�, so that z = A�b, or
explicitly
f ðkþ2Þ ¼ f LðeqÞðf ðkþ2ÞÞ þ
X

nþm¼kþ2

f QðeqÞðf ðnÞ; f ðmÞÞ � Ay otf ðkÞ þ V � $f ðkþ1Þ� �
. ð19Þ
Note that (19) does not specify f (k+2) completely because f (k+2) also appears on the right-hand side as argu-
ment of f L(eq). Due to the structure of f L(eq), the remaining degrees of freedom are q(k+2) and u(k+2) which
can be fixed using conditions (18a) and (18b).

In Appendix A.2 we exploit relations (18a), (18b) and (19) to determine the leading order coefficients of
the expansion. For example,
f ð1Þ ¼ c�2
s uð1Þ � Vf �;

f ð2Þ ¼ qð2Þf � þ F QðeqÞðuð1Þ; uð1ÞÞ � 1

2jc4s
mð$uð1Þ þ ½$uð1Þ�TÞ : ^f �;

ð20Þ
where u(1) and pð2Þ ¼ c2sq
ð2Þ satisfy the incompressible Navier–Stokes equations:
$ � uð1Þ ¼ 0;

otu
ð1Þ þ $ � ðuð1Þ 	 uð1ÞÞ þ $pð2Þ ¼ m$2uð1Þ;

uð1Þjt¼0 ¼ �u;

ð21Þ
with m resulting from property (v) of the collision operator A. In contrast to the Chapman–Enskog expan-
sion, the coefficients f (1) and f (2) are obviously given directly in terms of the solution to the target problem
(21).

We remark that the structure of the distribution function f (2) is not compatible with the initial value
(14b) unless �u ¼ 0. Similarly, incompatibilities with the initial values for the coefficients f (k) with k P 3
are observed if initial time derivatives of the Navier–Stokes solution do not vanish. This means that a reg-
ular expansion cannot accurately describe the initial evolution, or in other words, we expect an initial layer
if the condition (13) is used (a phenomenon which is well known). This behavior can be carefully investi-
gated using an initial layer expansion in the time scale t/�. It is also possible to avoid the initial layer by
modifying the initialization (13) in such a way that it is compatible with the expansion. A detailed discus-
sion of this phenomenon is deferred elsewhere [4].

For the higher order coefficients f (3), f (4), . . . we show in Appendix A.2 that f (k)/f * is an even (odd) poly-
nomial with respect to the velocity variable provided k is even (odd). As a consequence, u(2n) = 0 and
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q(2n+1) = 0 for all n so that the density and velocity moments of the solution f� of (12) have the following
forms:
u� ¼ �uð1Þ þ �3uð3Þ þ �5uð5Þ þ � � �
q� ¼ 1þ �2qð2Þ þ �4qð4Þ þ �6qð6Þ þ � � �

ð22Þ
The higher order moments u(k+1) and pðkþ2Þ ¼ c2sq
ðkþ2Þ with indices k = 2n, n P 1 are the solutions of linear

Oseen-type equations
$ � uðkþ1Þ ¼ �otq
ðkÞ;

otu
ðkþ1Þ þ 2$ � ðuð1Þ 	 uðkþ1ÞÞ þ $pðkþ2Þ ¼ m$2uðkþ1Þ þ BðkÞ;

uðkþ1Þjt¼0 ¼ 0; qðkþ2Þjt¼0 ¼ 0;
where the source term B(k) is obtained from lower order moments. We note that Eq. (22) can be rewritten as
1

�
u� � uð1Þ ¼ �2uð3Þ þ � � � ;

1

�2
c2s ðq� � 1Þ � pð2Þ ¼ �2c2sq

ð4Þ þ � � �
This observation can be used as a rigorous argument to show that the rescaled lattice Boltzmann moments
u�/� and c2s ðq� � 1Þ=�2 converge to the solutions u(1) and p(2) of the incompressible Navier–Stokes equations
[27].
5. Asymptotic analysis of the LBE

Before we proceed to the analysis of the lattice Boltzmann equation, let us briefly outline the general
framework which is applicable to any finite difference scheme for differential equations. To formulate
the prerequisites of the analysis let us assume that the finite difference equations are implemented in the
form of a computer program. The program should depend on a parameter � (grid spacing) which deter-
mines the total number N(�) of equations for the unknown values ŵ1; . . . ; ŵNð�Þ. The parameter N(�) may
explicitly appear in the equations. To incorporate data like boundary conditions or source terms and to
display the results, the program includes a certain scaling which relates unknowns ŵi and data values d̂ i

to points yi(�) in the interested domain. In particular, for decreasing �, the points yi(�) and the discrete solu-
tion consisting of all pairs ðyið�Þ; ŵiÞ become increasingly dense. If this numerical solution appears to be
smooth, then it is then natural to assume that ŵi can be described by a smooth function, for example, in
the form of a regular expansion
ŵi ¼ wð0Þðyið�ÞÞ þ �wð1Þðyið�ÞÞ þ �2wð2Þðyið�ÞÞ þ � � � ð23Þ

with smooth functions {w(k)}. This brief introduction already summarizes all the requirements (the differ-
ence equations and the scaling) as well as a first approach on how to analyze the result, namely by a regular
expansion. Note that no knowledge of the origin of the discrete equations is required. If we substitute the
expansion (23) into the difference equations, which define the algorithm, and Taylor-expand the difference
equations, we can derive differential equations for the expansion coefficients {w(k)}. If this is accomplished,
one can conclude that, in the leading order, the discrete values ŵi approximate point values of the solution
w(0) to the leading order differential equation. The accuracy of the approximation can be obtained by inves-
tigating the equations for the higher order coefficients w(1), w(2), . . . If the equation satisfied by w(1) has non-
trivial general solutions, the approximation is only first order accurate, but if w(1) can be shown to be zero,
then the approximation is at least of second order in �. In general if the leading n terms {w(k),
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k = 1, 2, . . . , n} vanish, then approximation is at least of (n + 1)th order. Since the first non-zero higher or-
der coefficient is the leading order error contribution, an analysis of the equation for this coefficient pro-
vides an indication of the size of the error and its dependence on the solution w(0).

If the result of the finite difference scheme shows irregular behavior like interior or boundary layers (e.g.,
[8]), grid oscillations or other phenomena which vary significantly on the grid scale, then the assumption of
a regular expansion is inadequate and will result in a contradiction with the assumed smoothness of one of
the coefficients, thus predicting phenomena on the grid scale up to a certain order. In this case, one can
either use irregular expansions to analyze the non-smooth phenomenon in detail (e.g., [26]), or identify
the inconsistencies and then modify the scheme to remove them.

After this introductory overture, we now apply this approach to our particular case, the lattice Boltz-
mann equation. The data of the problem are given by a smooth, divergence free initial velocity field
�u : Rd ! Rd which is periodic, and a source term g : Rþ

0 � Rd �V ! R which is also smooth, periodic
in space x, and with odd symmetry in the third argument. The odd symmetry assures that g leads to a
momentum flux but not to an immediate mass flux. The unknowns in the lattice Boltzmann equation
are labeled by ðn; j; vÞ 2 N0 �X�V where n indicates the time step, j 2 X � Rd a lattice point and
v 2 V a discrete velocity. Using these notations, we introduce the following scaling:
ðn; j; vÞ ! ðtnð�Þ; xjð�Þ; vÞ ¼ ð�2n; �j; vÞ 2 Rþ
0 � Rd �V; � > 0;
which associates time–space–velocity points to the grid labels. Note that this scaling incorporates the rela-
tion Dt = �2 = Dx2 between space and time increments which reflects the diffusive scaling and leads to a phys-
ically interesting limiting behavior in the case of the finite discrete-velocity model, as discussed in Section 4.

The lattice Boltzmann equation, we consider, has the form
f̂ ðnþ 1; j þ v; vÞ � f̂ ðn; j; vÞ ¼ A½f ðeqÞðf̂ Þ � f̂ �ðn; j; vÞ þ kĝðn; j; vÞ þ ð1� kÞĝðnþ 1; j þ v; vÞ ð24Þ

with the initialization
f̂ ð0; j; �Þ ¼ F ðeqÞð1; ��uðxjð�ÞÞÞ ð25Þ

and the discrete source term
ĝðn; j; vÞ ¼ �3gðtnð�Þ; xjð�Þ; vÞ. ð26Þ

The parameter k in (24) should satisfy 0 6 k 6 1. We remark that the low Mach number assumption is built
into (25) because we initialize with a velocity ��u of order � and because we make sure that the increase of
velocity during each time step is of the order �Dt = �3 by scaling the force term g with an appropriate factor.

Similar to our considerations in Section 4, we assume a regular expansion of the following form:
f̂ ðn; j; vÞ ¼ f �ðvÞ þ �f ð1Þðtnð�Þ; xjð�Þ; vÞ þ �2f ð2Þðtnð�Þ; xjð�Þ; vÞ þ � � � ð27Þ

with smooth coefficient functions f (m) which are periodic in the second argument. Note that the moments
qðmÞ ¼ h1; f ðmÞi; uðmÞ ¼ h1;Vf ðmÞi; pðmÞ ¼ h1;V	 Vf ðmÞi

inherit the periodicity and smoothness from the coefficients f (m).

From hereafter, the analysis is straightforward: the expansion is inserted into Eq. (24) and Taylor expan-
sion is employed to transform difference expressions into differential operators.

We start by substituting Eq. (27) into the left-hand side of (24). This leads to expressions of the following
form:
f ðmÞðtn þ �2; xj þ �v; vÞ � f ðmÞðtn; xj; vÞ ¼ �ðv � $Þf ðmÞ þ �2ðot þ ðv � $Þ2=2Þf ðmÞ

þ �3ðv � $Þðot þ ðv � $Þ2=6Þf ðmÞ þ � � � ;
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where the right-hand side is evaluated at (tn, xj, v) and the argument � of tn and xj is suppressed for brevity.
Generalizing this expansion to arbitrary orders, we formally obtain an infinite series:
f ðmÞðtn þ �2; xj þ �v; vÞ � f ðmÞðtn; xj; vÞ ¼
X1
r¼0

�rDrðot; v � $Þf ðmÞðtn; xj; vÞ;
where Dr(s, r) are polynomials, specifically,
D0ðs; rÞ ¼ 0; D1ðs; rÞ ¼ r; D2ðs; rÞ ¼ sþ r2=2; D3ðs; rÞ ¼ rðsþ r2=6Þ;

or more generally
Drðs; rÞ ¼
X

2aþb¼r

sarb

a!b!
; r P 1.
The important observation is that, if r is even, Dr(s, r) is an even polynomial in r because (2a + b) can be
even only if b is even. Conversely, Dr(s, r) is odd in r if r is odd.

With definition (26), an expansion of the source term on the right-hand side of Eq. (24) yields similarly
kĝðn; j; vÞ þ ð1� kÞĝðnþ 1; j þ v; vÞ ¼
X1
m¼0

�mgðmÞðtn; xj; vÞ
with
gð0Þ ¼ gð1Þ ¼ gð2Þ ¼ 0; gð3Þ ¼ g; gð3þrÞ ¼ ð1� kÞDrðot;V � $Þg; r P 1.
Note that, as a function of v, g(m) is odd (even) if m is odd (even) because g is assumed to be odd and
Dr(ot, V Æ $) is an odd (even) polynomial in V for an odd (even) r.

Since the collision operator acts locally in time and space, no further Taylor expansion is required and
only a shuffling of orders appears because of the quadratic nonlinearity. Consequently, we obtain in order
�k+2 for kP �2 (cf. Section 4 for the choice of k):
X
mþr¼kþ2

Drðot;V � $Þf ðmÞ � gðkþ2Þ ¼ A f LðeqÞðf ðkþ2ÞÞ � f ðkþ2Þ þ
X

mþr¼kþ2

f QðeqÞðf ðrÞ; f ðmÞÞ
" #

. ð28Þ
We have omitted some technical details in deriving (28), i.e., the fact that all Taylor expansions above are
carried out around the discrete points (tn(�), xj(�), v) which are �-dependent. In order to obtain the leading
order equation (28) at an arbitrary point (t, x, v), we have to choose a grid sequence based on ð�mÞm2N with
�m ! 0 and a sequence of labels (nm, jm, v) such that
ðtnmð�mÞ; xjmð�mÞ; vÞ !
m!1

ðt; x; vÞ.
Once the leading order condition is obtained, it can be removed from the expansion and after division by �,
the next condition (28) can be constructed in the same way. For further details, we refer to [26].

To work out the similarities of (28) to the expression (15), we note that
X
mþr¼kþ2

Drðot;V � $Þf ðmÞ ¼ ðV � $Þf ðkþ1Þ þ otf ðkÞ þ 1

2
ðV � $Þ2f ðkÞ þ � � �
Introducing the term
Lðkþ2Þ ¼ gðkþ2Þ �
X

mþr¼kþ2
m<k

Drðot;V � $Þf ðmÞ ð29Þ
we thus have
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X
mþr¼kþ2

Drðot;V � $Þf ðmÞ � gðkþ2Þ ¼ otf ðkÞ þ ðV � $Þf ðkþ1Þ þ 1

2
ðV � $Þ2f ðkÞ � Lðkþ2Þ.
so that the left-hand side of (28) differs from the one of (15) only in the terms (V Æ $)2f (k)/2 and L(k+2). In
particular, we can use the same analysis as for the FDVM case and mainly have to track the influence of the
additional terms. For example, the solvability conditions (18a) and (18b) are now of the form
otq
ðkÞ þ $ � uðkþ1Þ þ 1

2
$	 $ : pðkÞ ¼ h1; Lðkþ2Þi; ð30aÞ

otu
ðkÞ þ $ � pðkþ1Þ þ 1

2
h1;VðV � $Þ2f ðkÞi ¼ h1;VLðkþ2Þi; ð30bÞ
and A� applied to (28) yields the analog of (19)
f ðkþ2Þ ¼ f LðeqÞðf ðkþ2ÞÞ þ
X

mþr¼kþ2

f QðeqÞðf ðrÞ; f ðmÞÞ � Ay otf ðkÞ þ ðV � $Þf ðkþ1Þ þ 1

2
ðV � $Þ2f ðkÞ

� �

þ AyLðkþ2Þ. ð31Þ
The details of the analysis are given in Appendix A.3. For the expansion coefficients f (1) and f (2) we find the
same structure (20) as in the case of the FDVM. However, the moments u(1) and pð2Þ ¼ c2sq

ð2Þ now satisfy the
incompressible Navier–Stokes equation with an additional force field G = Æ1, Vgæ and the well-known vis-
cosity modification
$ � uð1Þ ¼ 0;

otu
ð1Þ þ $ � ðuð1Þ 	 uð1ÞÞ þ $pð2Þ ¼ m� 1

2
jc2s

� �
$2uð1Þ þ G ;

uð1Þjt¼0 ¼ �u.
So far, the analysis shows that the discrete density and velocity values
q̂ðn; jÞ ¼ h1; f̂ ðn; j; �Þi; ûðn; jÞ ¼ h1;Vf̂ ðn; j; �Þi

are, in leading order, given by a solution of the Navier–Stokes equation
q̂ðn; jÞ ¼ 1þ �2c�2
s pð2Þðtnð�Þ; xjð�ÞÞ þ � � � ;

ûðn; jÞ ¼ �uð1Þðtnð�Þ; xjð�ÞÞ þ � � �
The order of accuracy follows from the investigation of higher order terms. As in the case of the FDVM,
the coefficients f (m) are odd (even) if the index m is odd (even) so that the moments u(2n) and q(2n+1) vanish
for all n. The remaining fields u(k+1) and q(k+2) with even kP 2 are solutions to Oseen-type problems (in
analogy to the FDVM case)
$ � uðkþ1Þ ¼ h1;Lðkþ2Þi � otq
ðkÞ � 1

2
$	 $ : pðkÞ;

otu
ðkþ1Þ þ 2$ � ðuð1Þ 	 uðkþ1ÞÞ þ $pðkþ2Þ ¼ m� 1

2
jc2s

� �
$2uðkþ1Þ þ CðkÞ;

uðkþ1Þjt¼0 ¼ 0; qðkþ2Þjt¼0 ¼ 0;
where c(k) depends on lower order coefficients and is, in general, non-zero. Hence q(4) and u(3) will typically
not vanish. In terms of consistency, this result implies that the numerical values q̂ðn; jÞ and ûðn; jÞ yield at
least second order accurate approximations of the Navier–Stokes solution because
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1

�2
c2s ðq̂� 1Þ � pð2Þ ¼ �2c2s p

ð4Þ þ � � � ;

1

�
û� uð1Þ ¼ �2uð3Þ þ � � �
In these relations, the discrete quantities are evaluated at (n, j) and the continuous coefficients at the cor-
responding nodes (tn(�), xj(�)). Note that, in view of the scaling rule Dt = Dx2 = �2, second order accuracy
with respect to � means only first order accuracy in time because the time step is �2. However, the accuracy
in space is second order.

We conclude with a comment on the choice of g. If a prescribed field G(t,x) should appear as force term
in the Navier–Stokes equation, one can choose
gðt; x; vÞ ¼ c�2
s v � Gðt; xÞf �ðvÞ ð32Þ
because in this case
h1;Vgi ¼ c�2
s h1;V	 Vf �iG ¼ G .
We also note that the convex combination parameter k in Eq. (24) plays no role in leading order. Its effects
on the error will be discussed in the following section. An expression somewhat different from Eq. (32) has
been introduced in [30,31,34] where a forcing term is derived based on a Grad-expansion
ĝðn; j; vÞ ¼ �3

c2s
ðGðtn; xjÞ � ðv� ûðn; jÞÞ þ ðGðtn; xjÞ � vÞðûðn; jÞ � vÞÞÞf �ðvÞ.
Note that this function does not have the odd symmetry required in our analysis. However, since û is only
of order �, the even contributions start in order �4,
ĝ ¼ �3

c2s
G � Vf � þ �4

c2s
ðG � uð1Þ þ ðG � VÞðuð1Þ � VÞÞf � þ Oð�5Þ
which is just sufficient to show that u(1) and q(2) are given by a Navier–Stokes solution and that u(2) = 0 and
q(3) = 0. Hence, this force term also leads to a second order scheme.
6. 2D Taylor-vortex flow: a test case

As we have shown in the previous section, the asymptotic analysis can be used to verify consistency of a
finite difference scheme and to predict the consistency order. In this section, we would like to show that it
also yields correct information about the leading order error term. Such information is valuable if one in-
tends to improve the order of the method by removing the leading order error. The need for improvements
is obvious in flow problems on non-periodic domains where boundary conditions like the bounce-back con-
ditions typically reduce the consistency of the pressure to first or even zero order in lattice BGK scheme (cf.
[25]). In contrast, the situation on periodic domains is rather academical. Nevertheless, the example is use-
ful to show that the leading order error is correctly predicted by the asymptotic analysis and this is our main
motivation here.

We only remark in passing that a higher order method for the periodic problem can be obtained using the
classical method of Richardson extrapolation. If the numerical solution ûðn; jÞ=�; p̂ðn; jÞ ¼ c2s ðq̂ðn; jÞ � 1Þ=�2
can be expressed in terms of regular expansions with �-independent coefficients
p̂ðn; jÞ ¼ pð2Þðtn; xjÞ þ �2pð4Þðtn; xjÞ þ �4pð6Þðtn; xjÞ þ � � � ;
1

�
ûðn; jÞ ¼ uð1Þðtn; xjÞ þ �2uð3Þðtn; xjÞ þ �4uð5Þðtn; xjÞ þ � � � ;
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then u(3) and p(4) can be removed by combining the solutions obtained on two different grids. Taking, for
example, the solution based on grid-size � with weight �1 and the solution for the finer grid �/2 with factor
4, the leading error terms drops out upon addition and subsequent division of the result by 3 yields the
Navier–Stokes solution up to fourth order. To numerically support this consideration, we consider the
2D Taylor-vortex flow in a periodic domain as a test case:
Fig. 1
(solid)
�u1ðt; xÞ ¼ � 1

a
cosðax1Þ sinðbx2Þ expð�~mða2 þ b2ÞtÞ;

�u2ðt; xÞ ¼
1

b
sinðax1Þ cosðbx2Þ expð�~mða2 þ b2ÞtÞ;

�pðt;xÞ ¼ � 1

4
½a�2 cosð2ax1Þ þ b�2 cosð2bx2Þ� expð�2~mða2 þ b2ÞtÞ;
which a = b = 2p. To avoid initial layers which introduce a temporal oscillation on a faster time scale and
lead to �-dependent expansion coefficients (thus contradicting the assumption underlying the Richardson
procedure), we use a modification
uðt; xÞ ¼ aðtÞ�uðt; xÞ; pðt; xÞ ¼ aðtÞ�pðt; xÞ

with a smooth function a satisfying a(0) = 0 (to guarantee that initial layers are suppressed in the � orders
considered here, we choose a(t) = t3). It is easy to check that these fields satisfy the Navier–Stokes equation
with zero initial values, if we introduce the force term
G ¼ a0�uþ ða� 1Þa$ � ð�u	 �uÞ.

The force term G is incorporated into the lattice Boltzmann evolution using the form (32) and k = 1. As
collision operator we take the BGK approximation with relaxation parameter s ¼ m=ðjc2s Þ. The correspond-
ing lattice Boltzmann scheme approximates solutions to the Navier–Stokes Eq. (A.16) with effective viscos-
ity ~m ¼ m� jc2s=2 which we use in the definition of the functions �u and �p. In what follows, we set ~m ¼ 0.01.

Calculating the solution on 10 · 10, 20 · 20, 40 · 40 and 80 · 80 grids and plotting the numerical error in
pressure and velocity in a log–log plot versus the grid size � at t = 0.5, the increase of the order manifests itself
in an increased slope of the Richardson solution, as shown in Fig. 1. Note that the Richardson procedure
requires two grids for a single solution so that only the errors for 20 · 20, 40 · 40, and 80 · 80 grids are pre-
sented. A second remark concerns the normalization of the pressure. Since the pressure in the Navier–Stokes
equation is only unique up to constants, we generally face the problem that the pressure of an exact solution
may have a different normalization than the numerical pressure. In our example above, this could lead to a
second order behavior of the pressure error in connection with the Richardson procedure simply because
the difference of the two arbitrary pressure constants remains at second order. To remove this arbitrary
. Error behavior of velocity (left) and pressure (right) using the LBE (dashed) and the LBE with Richardson extrapolation
. The least-square slopes are 1.98 and 4.07 for the velocity and 1.96 and 4.04 for the pressure, respectively.
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constant, we subtract the arithmetic grid average from the final pressure approximation instead of the con-
stant value one and compare with the exact pressure where the grid average is also subtracted.

Another consequence which follows simply from the existence of the regular expansion is the accuracy of
finite difference derivative approximations of the solution. Consider, for example, the approximation of the
vorticity xð1Þ ¼ o1u

ð1Þ
2 � o2u

ð1Þ
1 which is not available directly as a velocity moment of the kinetic variables. If

we approximate x(1) by central differences (division by �2 is needed because û=� approximates u(1)):
x̂ðn; jÞ ¼ 1

2�2
½û2ðn; j þ e1Þ � û2ðn; j � e1Þ� �

1

2�2
½û1ðn; j þ e2Þ � û1ðn; j � e2Þ�;
the question concerning the accuracy of x̂ arises. Inserting the expansion for û into the expression for x̂ and
performing a Taylor expansion, we find, up to terms of order �4,
x̂ ¼ xð1Þ þ �2

6
o
3
1u

ð1Þ
2 � o

3
2u

ð1Þ
1

� 	
þ �2xð3Þ þ Oð�4Þ
where x(3) is the vorticity corresponding to the velocity field u(3). We see that x̂� xð1Þ ¼ Oð�2Þ, i.e., the finite
difference approximation is second order accurate. The above argument breaks down if the field u(3) is not
�-independent (e.g., if u(3) varies in order one between two grid points). Then the discrete derivative may be
of order 1/� which would reduce the accuracy to order one. However, in the periodic case considered here,
this is not the case and thus we observe second order accuracy. For the test problem above, the numerical
vorticity x̂ is compared with the exact one x(1) at t = 0.5 (using k = 1) in Fig. 2.

While the Richardson procedure and the statement about the accuracy of finite difference derivative
approximations requires only the existence of a regular expansion, we would also like to show that the
structure of the coefficients is correctly given in the expansion. To demonstrate this, we concentrate on
the role of the parameter k in our LB scheme. As we have seen in the previous section, k does not affect
the behavior of the scheme in the leading order. However, two numerical solutions calculated with two dif-
ferent values k1 and k2 will not exhibit the same numerical error. To predict the difference dû of the velocity
fields and dq̂ of the densities, we consider the equation for the leading order errors u(3) and q(4) in Appendix
A.4. It turns out that the difference of the leading error terms is given by
duð3Þ ¼ w� dkG ; dqð4Þ ¼ q=c2s ;
where dk = k1 � k2 and w and q solve
$ � w ¼ 0;

otwþ 2$ � ðuð1Þ 	 wÞ þ $q ¼ m� 1

2
jc2s

� �
$2wþ 2dk$ � ðuð1Þ 	 GÞ;

wjt¼0 ¼ 0; qjt¼0 ¼ 0;
Fig. 2. The vorticity error versus �. The least-square slope is 1.98.



Fig. 3. Left: �-dependence of the maximum du(3) (dashed) and the maximum dw :¼ ŵ� dkG (solid). The least-square slopes are 2.84
and 4.93. Right: maximum of dq(4) (dashed) and of dq0ð4Þ :¼ dqð4Þ � �4q̂ (solid). The least-square slopes are 3.98 and 6.65.
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To verify whether this prediction can be numerically recovered, we perform the following test: we run the
LB scheme (24) for the test case presented above (the modified periodic vortex) with two different values for
k (e.g., k1 = 0.1 and k2 = 0.7). The difference of the two velocity fields dû should then be equal to �3du(3) in
leading order. If the prediction is correct, the field
dû� �3ŵþ �3dkG ð33Þ

should then be of the order �5. Here, ŵ is any second order accurate solution of the w problem. We have
calculated ŵ using the LB algorithm (24) with a modified equilibrium distribution where the quadratic part
F Q(eq)(u, u) is appropriately replaced by F Q(eq)(u(1), w) with the exact solution u(1) of the Navier–Stokes
problem. Similarly, the corrected difference of densities
dq̂� �4q̂=c2s ð34Þ

should be of order �6. In Fig. 3, the expressions (33) and (34) computed from several grids is plotted versus
the grid size in log–log scales. The slopes of the least squares fitted error curve are 4.93 for velocity and 6.65
for pressure which reflects the prediction of our asymptotic analysis.
7. Conclusions

In this article we present a general methodology to conduct an order-by-order consistency analysis of the
lattice Boltzmann equation. Our approach is based on a direct asymptotic analysis of finite difference
schemes which is fairly general and has been widely used in numerical analysis. It turns out that the basic
steps in the asymptotic expansion are parallel to the approach of Sone [43,44] for the continuous Boltz-
mann equation and we highlight this particular relation by explicitly pointing out the connection between
the LBE and a continuous FDVM. We demonstrate that the asymptotic analysis yields details about the
accuracy of the lattice Boltzmann method and the structure of the error. The methodology presented here
can be readily extended to analyze various boundary conditions, coupling conditions, and initial layers in
the LBE simulations.

We would like to point out that the asymptotic analysis presented here in several aspects differs from the
traditional Chapman–Enskog (CE) treatment of the lattice Boltzmann equation, which leads to the com-

pressible Navier–Stokes equations. First, our approach uses a single time scale as opposed to the two-
time-scale (multiple-time-scale in general) expansion in the CE analysis. Although it is easy to use two
time-scales in the asymptotic analysis by simply setting
f̂ ðn; j; vÞ ¼ f ð0Þð�n; �2n; �j; vÞ þ �f ð1Þð�n; �2n; �j; vÞ þ �2f ð2Þð�n; �2n; �j; vÞ þ � � � ;
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we do not do so for the following reason. The lattice Boltzmann equation is intended to solve the incom-

pressible Navier–Stokes equation, therefore the relevant time scale is the slower one tn = �2n. Within the
context of incompressible Navier–Stokes equation, effects which occur in the faster time scale �n = tn/�
(such as sound waves) are merely numerical effects. Were these effects indeed relevant in the leading orders
of the flow velocity and pressure, then the LBE method is no longer valid for the purpose of simulating the
incompressible Navier–Stokes equations and they are in fact beyond the realm of the incompressible

Navier–Stokes equations. Hence, the validity of an expansion regular in the leading orders for the LBE
solutions is equivalent to the validity of the LBE approximation for the smooth and incompressible Na-
vier–Stokes solutions. In the same token, we also conclude that Knudsen-number effects observed in the
LBE simulations are merely numerical artifacts, because the effective Knudsen number Kn := � is coupled
with the discretization, i.e., �2 = Dx2 = Dt, so that Knudsen-number effects are only observed on the grid
scale (e.g., [8]). It is therefore incorrect to perceive these numerical artifacts in the LBE simulations as phys-
ical effects (e.g., [32]) because, by its very nature, the lattice Boltzmann equation cannot capture the Knud-
sen layer. To analyze numerical Knudsen-number effects, a singular asymptotic expansion should be used
[25]. We should stress that the ultimate goal of such an analysis is to mitigate artificial Knudsen-number
effects by making them higher order one so to improve the smoothness of the numerical solution.

The second and significant difference between our approach and the CE analysis is in the structure of the
expansion. In the CE analysis, it is assumed that the numerical solution can be written as
f̂ ¼ F ðeqÞðq; uÞ þ �gð1Þ þ �2gð2Þ þ � � � ;
where q, u and g(k) are smooth functions which can be evaluated at the space–time grid points (n, j). Fur-
thermore, the functions g(k), k = 1, 2, . . . , are assumed to have no contribution to the conserved quantities
(q and u here). Consequently, in the CE approach one must assume the existence of smooth functions q and
u interpolating the averages q̂ and û of the LB solutions at the grid points. (A similar assumption forms the
basis of the modified equation analysis which is criticized in [16,5].) There are two undesirable consequences
of this assumption. First, the smoothness assumption is generally not valid because the numerical solution
typically exhibits irregular or non-smooth behavior in some order of �. In our analysis this is not crucial
because it is only the leading order quantities which are required to be smooth while higher order quantities
may be irregular. And second, the smoothness assumption relies on the fact that the CE analysis is based on
a given partial differential equation (the Boltzmann equation) for f from which a set of partial differential
equations for the conserved quantities are derived subsequently. In the LBE method, q and u are deter-
mined by a difference equation, and there is no PDE to be satisfied by q and u exactly. It is only possible
to show that q and u approximately satisfy certain PDEs in which the error terms depending on higher order
derivatives of q and u. By directly tackling the discrete lattice Boltzmann equation, our approach provides
an order-by-order information about the structure of the LBE solution. In particular, the underlying
incompressible Navier–Stokes problem emerges in this description so that it is straightforward to quantify
the deviation from the exact solution of a target problem.

Apart from these conceptual differences, there is nevertheless a close connection between the asymptotic
analysis and CE analysis. If in CE analysis the (hypothetical) functions q and u are expanded in terms of �,
one recovers equations for the expansion coefficients which are precisely those obtained directly with the
asymptotic analysis. Conversely, a truncated expansion ~u ¼ u0 þ �u1 þ � � � þ �mum is given based on the
coefficients constructed from the asymptotic analysis, then ~u differs from the CE moment u at most in
the order �m+1, provided that the function u exists within the CE analysis.

Finally, we hope that with the new analytical method we can close a gap in the consistency analysis of
the lattice Boltzmann equation. We also realize that the method used in here can be applied to analyze other
features like boundary conditions and initial layers in the lattice Boltzmann simulations. These are the sub-
jects of our future study [4].



694 M. Junk et al. / Journal of Computational Physics 210 (2005) 676–704
Acknowledgments

MJ and AK have been supported by the Deutsche Forschungsgemeinschaft (DFG) through the grants
JU440/1 and KL1105/9, respectively, under the project Lattice Boltzmann Methoden. LSL has been sup-
ported by the United States Air Force Office for Scientific Research (AFOSR) under Grant No. F49620-
01-1-0142 (technical monitor: Dr. J. Tishkoff).
Appendix A. Asymptotic analysis of the LBE

A.1. Preliminary remarks

The analysis of both the FDVM and the LBE depends on certain algebraic properties of the collision
operator. We summarize the key properties in a form which is convenient for the subsequent asymptotic
expansion.

As before, we denote the orthogonal projection onto the kernel of A by Q so that the corresponding pro-
jector onto the orthogonal complement is
P :¼ I� Q.
That the mapping A is positive definite on the orthogonal complement of QF allows us to define its pseudo-
inverse
Ay :¼ ðAjPðFÞÞ
�1
P.
Note that Ay : F ! F has the property
AAy ¼ P
so that A�b solves the problem Az = b, if Qb = 0. This argument has been used in Section 4. The converse
relation A�A = P yields together with Q[Vf *] = 0 for the even function f *, of which the lowest order mo-
ments have the same isotropy as the Maxwellian, and property (v) of A
AyðV f �Þ ¼ m
jc2s

V f �. ðA:1Þ
The assumed symmetry V ¼ �V of the velocity set implies that odd and even functions are orthogonal to
each other. Introducing the odd and even projections for f 2 F:
ðSþ f ÞðvÞ ¼ 1

2
½f ðvÞ þ f ð�vÞ�; ðS�f ÞðvÞ ¼ 1

2
½f ðvÞ � f ð�vÞ�;
we clearly have
hS�f ; 1i ¼ 1

2

X
c2V

f ðcÞ �
X
c2�V

f ðcÞ
 !

¼ 0
so that
hS�f ; Sþgi ¼ hS�ðfSþgÞ; 1i ¼ 0 8f ; g 2 F.
Using the projector S�, the property of a function f to be even can be formulated as S�f = 0. For example,
we have
S�f QðeqÞðf ; gÞ ¼ 0 8f ; g 2 F; ðA:2Þ
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Also property (iii) of the collision operator can be restated as AS+ = S+A. One can also verify that Q com-
mutes with S+ so that the same carries over to P. Since S� = I�S+, all the operators, A, A�, Q and P com-
mute with both the odd and even projections S� and S+.

A.2. Analysis of the FDVM

We exploit relations (18a), (18b) and (19) to determine the leading order coefficients f (1), f (2) and f (3).
Starting with k = �1 and keeping in mind that f (k) = 0 for k < 0, we conclude f (1) = f L(eq)(f (1)) from
(19), i.e.,
f ð1Þ ¼ qð1Þ þ c�2
s uð1Þ � V


 �
f �. ðA:3Þ
Eqs. (18a) and (18b) with k = 0 can further determine the moments q(1) and u(1). Because q(0) = 1 and
u(0) = 0, and h1;V	 Vf ð1Þi ¼ c2sq

ð1ÞI, then
$ � uð1Þ ¼ 0; $qð1Þ ¼ 0. ðA:4Þ

With k = 1, Eqs. (18a) and (18b) will fully determine q(1) and u(1) as the following. Based on Eq. (18a) and
the fact that q(1) is x-independent, the application of the divergence theorem to the integration over the peri-
odic domain X leads to
dqð1Þ

dt
¼

Z
X
dx

� ��1 Z
X
$ � uð2Þdx ¼ 0.
Since q(1) = 0 initially [cf. Eq. (14a)], we conclude that q(1) = 0 for all time tP 0. The final determination of
u(1) follows from (18b) with k = 1. However, in this equation, we need a scalar product involving the second
expansion coefficient f (2) which we obtain again from (19)
f ð2Þ ¼ f LðeqÞðf ð2ÞÞ þ f QðeqÞðf ð1Þ; f ð1ÞÞ � AyðV � $f ð1ÞÞ. ðA:5Þ

Using (A.3) with q1 = 0, we find
AyðV � $f ð1ÞÞ ¼ c�2
s $uð1Þ : AyðV	 Vf �Þ. ðA:6Þ
Since V 	 V is a symmetric matrix, we can replace the Jacobian $u(1) by its symmetric part S[u(1)]/2 without
changing the :-product, where
Sð1Þ :¼ S½uð1Þ� :¼ $uð1Þ þ ½$uð1Þ�T.

Because the trace of S(1) is 2$ Æ u(1), which vanishes due to the incompressibility condition, V	V can be re-
placed by its traceless part
V :¼ V	 V� 1

d
V � VI;
and therefore,
AyðV � $f ð1ÞÞ ¼ 1

2c2s
Sð1Þ : AyV f �.
Property (A.1) now implies that
1

2c2s
AyV f � ¼ m

2c4sj
V f �.
Thus, (A.5) turns into
f ð2Þ ¼ f LðeqÞðf ð2ÞÞ þ f QðeqÞðf ð1Þ; f ð1ÞÞ � 1

2jc4s
mSð1Þ : V f �. ðA:7Þ
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Now we can evaluate the moment p(2) = Æ1,V 	 Vf (2)ærequired in (18b) with k = 1. According to (9) and
(11), we have
h1;V	 V½f LðeqÞðf ð2ÞÞ þ f QðeqÞðf ð1Þ; f ð1ÞÞ�i ¼ uð1Þuð1Þ þ c2sq
ð2ÞI;
and because of (7c)
h1;VaVbV cdf �i ¼ jc4s
2

d
dabdcd � dacdbd � daddbc

� �
which implies, in connection with tr(S(1)) = 2$ Æ u(1) = 0,
1;VaVb
m

2kc4s
ðV f �Þ : Sð1Þ

* +
¼ mSð1Þ

ab .
Altogether, the required moment is
pð2Þ ¼ uð1Þ 	 uð1Þ þ c2sq
ð2ÞI� mSð1Þ.
By setting pð2Þ ¼ c2sq
ð2Þ and k = 1 in (18b), we reach the result:
$ � uð1Þ ¼ 0;

otu
ð1Þ þ $ � ðuð1Þ 	 uð1ÞÞ þ $pð2Þ ¼ m$2uð1Þ;

uð1Þjt¼0 ¼ �u.

ðA:8Þ
Hence, the leading order contribution of the velocity
u� ¼ h1;Vf�i ¼ �uð1Þ þ � � �

satisfies the incompressible Navier–Stokes equation and the first non-trivial order of the density
q� ¼ h1; f�i ¼ 1þ c�2
s �2pð2Þ þ � � �
is determined as the associated pressure.
In the next step, we show that u(2) = 0 and q(3) vanish identically which relies only on the algebraic

behavior of the Boltzmann equation under odd/even projections. Actually, the observation can be general-
ized to the statement
uð2mÞ ¼ 0; qð2mþ1Þ ¼ 0; m P 0. ðA:9Þ

We observe that f (0) = f * is an even function and that f ð1Þ ¼ c�2

s uð1Þ � Vf � is an odd function. In an induc-
tion argument, we therefore assume that, for k P 0 being an even index, the coefficient f (k) is an even and
f (k+1) an odd function. Applying the odd projection S� to (19), observing (A.2), and noting that ot and A�

commute with S�, and that S�(V Æ $) = (V Æ $)S+, we obtain
S�f ðkþ2Þ ¼ S�f LðeqÞðf ðkþ2ÞÞ � AyðotS� f ðkÞ þ V � $Sþf ðkþ1ÞÞ.

Due to the induction assumption, S�f (k) = S+f (k+1) = 0. Taking the structure of f L(eq) into account, we
arrive at
S�f ðkþ2Þ ¼ c�2
s uðkþ2Þ � Vf �.
Similarly, an application of S+ to (19) with k replaced by k + 1 leads to a drastic simplification. Now, the
quadratic terms vanish because the summation condition n + m = k + 3 implies that exactly one of the two
indexes has to be even, and the distribution function with an even index has a vanishing average velocity.
Only for the even index k + 2 we do not know yet whether u(k+2) = 0. Hence,
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Sþf ðkþ3Þ ¼ qðkþ3Þf � þ 2f QðeqÞðf ð1Þ; f ðkþ2ÞÞ � AyðV � $ÞS�f ðkþ2Þ. ðA:10Þ

To fix the unknown coefficients u(k+2) and q(k+3), we use again relations (18a) and (18b). Since q(k+1) = 0,
Eq. (18a) with k replaced by k + 1 yields the incompressibility condition
$ � uðkþ2Þ ¼ 0.
Next, we use Eq. (18b) with k replaced by k + 2. The required tensor
pðkþ3Þ ¼ h1;V	 Vf ðkþ3Þi ¼ h1;V	 VSþf ðkþ3Þi

has essentially the same structure as p(2) because S+f (k + 3) in (A.10) is structurally similar to f (2) in (A.5).
Using similar arguments as in connection with p(2), we thus obtain
pðkþ3Þ ¼ 2uð1Þ 	 uðkþ2Þ þ c2sq
ðkþ3ÞI� mSðkþ2Þ
where S(k+2) = [$u(k+2)] + [$u(k+2)]T. Setting pðkþ3Þ ¼ c2sq
ðkþ3Þ, we find a homogeneous Oseen problem
$ � uðkþ2Þ ¼ 0;

otu
ðkþ2Þ þ 2$ � ðuð1Þ 	 uðkþ2ÞÞ þ $pðkþ3Þ ¼ m$2uðkþ2Þ;

uðkþ2Þjt¼0 ¼ 0; qðkþ3Þjt¼0 ¼ 0;
which only has the zero solution so that (A.9) follows.
Finally, we would like to discuss the structure of the equations for the non-trivial coefficients u(k+1) and

q(k+2) with even index k P 2. The first observation is that u(k+1) is generally not an incompressible field be-
cause (18a) implies
$ � uðkþ1Þ ¼ �otq
ðkÞ. ðA:11Þ
(For example, the divergence of u(3) is given by the temporal variation of the Navier–Stokes pressure
pð2Þ ¼ c2sq

ð2Þ in (A.8) which usually depends on space and time.) The time evolution of u(k+1) is governed
by (18b) with k replaced by k + 1, for which we need p(k+2) = Æ1, V 	 Vf (k+2)æ. The explicit structure of
p(k+2) is increasingly complicated for increasing k because it involves derivatives of the coefficients
u(1), . . . , u(k�1), and q(2), . . . , q(k), as well as multiple applications of A� which we cannot simplify in our gen-
eral approach where we minimized our assumptions on A (to simplify the appearing expressions, the action
of A on functions of the form Rf *, where R is a polynomial in v, should be specified which is, of course,
possible for a given collision operator). In the following, we will therefore combine all terms in a function
b(k) which are independent of u(k+1) and q(k+2) in (19). In particular, the only contribution of A�(V Æ $f (k+1))
which is not absorbed in b(k) is the term c�2

s $uðkþ1Þ : AyðV	 Vf �Þ. Applying the same simplifications as in
the case of Eq. (A.6), we arrive at
1

c2s
$uðkþ1Þ : AyðV	 Vf �Þ ¼ m

2jc4s
Sðkþ1Þ : V f � þ 1

dc2s
$ � uðkþ1ÞAyðjVj2f �Þ; ðA:12Þ
where S(k+1) = [$u(k+1)] + [$u(k+1)]T. Note that $ Æ u(k+1) generally does not vanish, but this fact will not
change the nature of the resulting equation because, Eq. (A.11) shows that $ Æ u(k+1) is a known quantity
depending on the lower order coefficient otq

(k). In particular, we can absorb the second term on the
right-hand side of (A.12) into the function b(k) and thus have
f ðkþ2Þ ¼ qðkþ2Þf � þ 2f QðeqÞðf ð1Þ; f ðkþ1ÞÞ � m
2jc4s

Sðkþ1Þ : V f � þ bðkÞ.
To obtain the evolution equation of u(k + 1), we need the V 	 V moment of f (k+2). Using the same calcu-
lations as for p(2), observing that $ Æ u(k+1) = �otq

(k), we find
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pðkþ2Þ ¼ 2uð1Þ 	 uðkþ1Þ þ c2sq
ðkþ2ÞI� mSðkþ1Þ þ 2m

d
otq

ðkÞIþ h1;V	 VbðkÞi.
If we introduce B(k) as the divergence of the last two terms which only involve lower order coefficients, we
finally arrive at the Oseen type equation for the coefficients u(k+1) and pðkþ2Þ ¼: c2sq

ðkþ2Þ with even indexes
kP 2,
$ � uðkþ1Þ ¼ �oðkÞt ;

otu
ðkþ1Þ þ 2$ � ðuð1Þ 	 uðkþ1ÞÞ þ $pðkþ2Þ ¼ m$2uðkþ1Þ þ BðkÞ;

uðkþ1Þjt¼0 ¼ 0; qðkþ2Þjt¼0 ¼ 0.

ðA:13Þ
Note that for the determination of u(k+1) and p(k+2), the function B(k) can be regarded as a given source term
because it is derived from the coefficient functions which are already determined in the previous order of the
expansion.

In summary, we have a complete picture of the asymptotic behavior: the density and velocity moments
of the solution f� of (12) have the form
u� ¼ �uð1Þ þ �3uð3Þ þ �5uð5Þ þ � � �
q� ¼ 1þ �2qð2Þ þ �4qð4Þ þ �6qð6Þ þ � � �
where u(1) and c2sq
ð2Þ solve the Navier–Stokes equations and u(k+1) and q(k+2), with k = 2n P 2, solve sys-

tems of type (A.13).

A.3. Analysis of the LBE

For k = �1 and k = 0, Eqs. (30a), (30b) and (31) coincide with the counterparts in Section 4 because all
space and time derivatives of f (0) = f * vanish, f (�1) = 0, and L(0) = L(1) = 0. We thus conclude
f ð1Þ ¼ qð1Þ þ c�2
s uð1Þ � V


 �
f � ðA:14Þ
with
$qð1Þ ¼ 0; $ � uð1Þ ¼ 0.
To show that even q(1) = 0, we need (30a) with k = 1. Noting that pð1Þ ¼ c2sq
ð1ÞI and L(3) = g, we find
otq
ð1Þ þ $ � uð2Þ þ 1

2
c2s$

2qð1Þ ¼ h1; gi.
Since $q(1) = 0, the Laplacian $2q(1) also vanishes. Moreover, Æ1, gæ = 0 because g is an odd function in v.
Therefore, in the case k = 1, (30a) coincides with (18a) and we conclude as in Section A.2 that q(1) = 0 and
f ð2Þ ¼ f LðeqÞðf ð2ÞÞ þ f QðeqÞðf ð1Þ; f ð1ÞÞ � m
2jc4s

Sð1Þ : V f �. ðA:15Þ
with the associated second moment
pð2Þ ¼ uð1Þ 	 uð1Þ þ c2sq
ð2ÞI� mSð1Þ
which is needed in (30b) with k = 1 to derive the evolution equation for u(1). Now, the right-hand side
G = Æ1, Vgæ can be non-zero and acts as a force field in the equation for u(1). The remaining term involving
the second derivative of f (1) is anti-diffusive in nature. We have with (A.14) and q(1) = 0,
h1;VaðV � $Þ2f ð1Þi ¼ c�2
s h1;VaVbVcVdf �iocoduð1Þb .
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Using (7c), we obtain
h1;VaðV � $Þ2f ð1Þi ¼ jc2s ð$2uð1Þa þ 2oa$ � uð1ÞÞ ¼ jc2s$
2uð1Þ.
Combining these calculations, we see that u(1) and pð2Þ ¼ c2sq
ð2Þ satisfy an incompressible Navier–Stokes

problem with the well-known viscosity correction
$ � uð1Þ ¼ 0;

otu
ð1Þ þ $ � ðuð1Þ 	 uð1ÞÞ þ $pð2Þ ¼ m� 1

2
jc2s

� �
$2uð1Þ þ G ;

uð1Þjt¼0 ¼ �u.

ðA:16Þ
To determine the higher order terms, we proceed as in Appendix A.2 and show that f (m) is odd (even) if
the index m is odd (even). In fact, the induction proof can essentially be taken over because of the odd/even
symmetries of the additional terms 1

2
ðV � $Þ2f ðkÞ þ Lðkþ2Þ. Let us adopt the induction assumption that, for k

even, f (0), f (2), . . . , f (k) are even and f (1), f (3), . . . , f (k+1) are odd. Then
Lðkþ2Þ ¼ gðkþ2Þ �
X

mþr¼kþ2
m<k

Drðot;V � $Þf ðmÞ
is even because m + r = k + 2 can only be even if both m and r are even and since Dr(ot,V Æ $) is an even
polynomial in V, each term Drf

(m) in the sum is even. Combined with the even symmetry of g(k+2), we con-
clude S�L(k+2) = 0. Similarly, we have S+L(k+3) = 0 = S�L(k+4) and, of course, S�(V Æ $)2f (k) =
0 = S+(V Æ $)2f (k + 1). With the same argument presented in Section A.2, we can show that u(k+2) and
pðkþ3Þ ¼ c2sq

ðkþ3Þ satisfy the homogeneous Oseen problem
$ � uðkþ2Þ ¼ 0;

otu
ðkþ2Þ þ 2$ � ðuð1Þ 	 uðkþ2ÞÞ þ $pðkþ3Þ ¼ m� 1

2
jc2s

� �
$2uðkþ2Þ;

uðkþ2Þjt¼0 ¼ 0; qðkþ3Þjt¼0 ¼ 0;
where the modified viscosity appears because of Æ1, V(V Æ $)2f (k+2)æ/2 in (30b) with k replaced by k + 2.
Since the homogeneous Oseen problem has only the trivial solution u(k+2) = 0 and p(k+3) = 0, we have
S�f (k+2) = 0 = S+f (k+3) which concludes the induction proof.

To complete the analysis, we also derive the equations for the non-trivial fields u(k+1) and q(k+2) with
even kP 2. Now the divergence condition has additional source terms. From (30a), we find
$ � uðkþ1Þ ¼ h1;Lðkþ2Þi � otq
ðkÞ � 1

2
$	 $ : pðkÞ.
Finally, the evolution equation for u(k+1) is obtained from (30b) with k replaced by k + 1. The required ten-
sor p(k+2) can be calculated by taking second moments of (31) which involves derivatives of lower order
coefficients and multiple applications of A�. If we collect all terms containing expressions with
q(2), . . . , q(k) and u(1), . . . , u(k�1) as well as the given source g in a function c(k), we find as in Section A.2 that
f ðkþ2Þ ¼ qðkþ2Þf � þ 2f QðeqÞðf ð1Þ; f ðkþ1ÞÞ � m
2jc4s

Sðkþ1Þ : V f � þ cðkÞ.
and from (30b), we finally get the Oseen type equation
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$ � uðkþ1Þ ¼ h1;Lðkþ2Þi � otq
ðkÞ � 1

2
$	 $ : pðkÞ;

otu
ðkþ1Þ þ 2$ � ðuð1Þ 	 uðkþ1ÞÞ þ $pðkþ2Þ ¼ m� 1

2
jc2s

� �
$2uðkþ1Þ þ C ðkÞ;

uðkþ1Þjt¼0 ¼ 0; qðkþ2Þjt¼0 ¼ 0.

ðA:17Þ
Here c(k) contains all lower order and force terms which appear when calculating the required V 	 V mo-
ments like Æ1, V 	 Vc(k)æ but also the terms which involving $ Æ u(k+1) which depends only on lower order
and force terms because of (30a).
A.4. Effects of the parameter k

In this section, we investigate how two numerical solutions differ in leading order if two different param-
eters k1 and k2 are used in the scheme (24). We denote the expansion coefficients in the two cases by
f ðm;k1Þ; f ðm;k2Þ, and their difference is defined as
df ðmÞ ¼ f ðm;k1Þ � f ðm;k2Þ.
Similar notation is applied to the velocity moments. In light of (A.14) and (A.15), the first two expansion
coefficients are independent of k, so that
df ð1Þ ¼ df ð2Þ ¼ 0 ðA:18Þ

and we can simply refer to f (1) and f (2) instead of f (1,k) and f (2,k). Before we derive df (3) and df (4), we con-
sider the terms L(m,k) defined in (29) up to m = 5. We have
dLð0Þ ¼ dLð1Þ ¼ dLð2Þ ¼ dLð3Þ ¼ 0
and since L(4,k) depends only on f (1) apart from g(4,k) = (1 � k)(V Æ $)g,
dLð4Þ ¼ �dkðV � $Þg; dk ¼ k1 � k2. ðA:19Þ

Similarly, L(5,k) only depends on f (1), f (2) and g(5,k), so that because of (A.18)
dLð5Þ ¼ �dk otg þ
1

2
ðV � $Þ2g

� �
. ðA:20Þ
Coming back to the coefficients f (m,k), we observe from (31) with k = 1 that
df ð3Þ ¼ c�2
s duð3Þ � Vf �; ðA:21Þ
where we have used (A.18) and q(3) = 0, dL(3) = 0. Similarly, with k = 2, we find
df ð4Þ ¼ dqð4Þf � þ 2f QðeqÞðf ð1Þ; df ð3ÞÞ � AyðV � $Þdf ð3Þ þ AydLð4Þ.
The BGK assumption allows to replace A� by ðm=jc2s ÞI and in view of (A.19), (32) and (A.21), we can write
more explicitly
df ð4Þ ¼ dqð4Þf � þ 2f QðeqÞðf ð1Þ; df ð3ÞÞ � m
jc4s

ðV	 VÞf � : $w; ðA:22Þ
where we introduce
w ¼ duð3Þ þ dcG . ðA:23Þ

The evolution equation for dw(3), dq(4) follows from (30a) and (30b) by taking differences and observing that
df (2) = 0.
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$ � duð3Þ ¼ h1; dLð4Þi; ðA:24Þ

otu
ð3Þ þ $ � pð4Þ þ 1

2
h1;VðV � $Þ2f ð3Þi ¼ h1;VLð5Þi. ðA:25Þ
Using (A.19) and (32), we find Æ1, dL(4)æ = �dk$ Æ G, so that the first condition reduces to a divergence-free
condition for the field (A.23)
$ � w ¼ 0.
To evaluate (A.25), we first consider the dL(5) term
h1;VLð5Þi ¼ � dk
c2s

h1;V	 Vf �iotG � dk
2c2s

h1;VðV � $Þ2G � Vf �i
which can be combined with the df (3) term in (A.25)
h1;VLð5Þi � 1

2
h1;VðV � $Þ2f ð3Þi ¼ �dkotG � 1

2c2s
h1;VðV � $Þ2w � Vf �i
and using $ Æ w = 0 we calculate with (7c)
h1;VLð5Þi � 1

2
h1;VðV � $Þ2f ð3Þi ¼ �dkotG � jc2s

2
Dw.
Finally, the dp(4) contribution is calculated from (A.22)
dpð4Þ ¼ c2sdq
ð4ÞIþ 2uð1Þ 	 duð3Þ � mdSð3Þ � mS½w�.
Altogether, the equation for w = du(3) + dkG and q ¼ c2sdq
ð4Þ reads
$ � w ¼ 0;

otwþ 2$ � ðuð1Þ 	 wÞ þ $q ¼ m� 1

2
jc2s

� �
$2wþ 2dk$ � ðuð1Þ 	 GÞ;

wjt¼0 ¼ 0; qjt¼0 ¼ 0.
Appendix B. The LBE models

B.1. The D2Q9 model

In the D2Q9 model, the velocities are V ¼ fc0; c1; . . . ; c8g with c0 = 0 and
c1 ¼
1

0

� �
; c2 ¼

0

1

� �
; c3 ¼

�1

0

� �
; c4 ¼

0

�1

� �
;

c5 ¼
1

1

� �
; c6 ¼

�1

1

� �
; c7 ¼

�1

�1

� �
; c8 ¼

1

�1

� �
.

The function f * is defined in terms of the weights
f �ðciÞ ¼
4=9; i ¼ 0;

1=9; i ¼ 1; 2; 3; 4;

1=36; i ¼ 5; 6; 7; 8

8><
>:
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which implies c2s ¼ 1=3 in (7b) and j = 1 in (7c). The construction of the equilibrium distribution described
in Section 3.2 then gives rise to the function defined in [17],
F ðeqÞðq; u; vÞ ¼ qþ �q 3u � vþ 3

2
ðu � vÞ2 � 3

2
juj2

� �� �
f �ðvÞ; �q 
 1.
A large class of operators A satisfying the criteria (i) to (v) listed in Section 3.2 can be constructed using
an orthonormal basis {u1, . . . , u9} of F given by [10]
u1ðvÞ ¼
1

3
;

u2ðvÞ ¼ 1ffiffi
6

p vx;

u3ðvÞ ¼ 1ffiffi
6

p vy ;

)

u4ðvÞ ¼ 1
2
vxvy ;

u5ðvÞ ¼ 1
2
ðv2x � v2yÞ;

u6ðvÞ ¼ 1
6
ð4� 3v2Þ;

9>=
>;

u7ðvÞ ¼
ffiffi
3

p

6
vxð2� 3v2yÞ;

u8ðvÞ ¼
ffiffi
3

p

6
vyð2� 3v2xÞ;

)

u9ðvÞ ¼ 3
2
ðv2xv2y þ 1Þ � v2.
Using the orthogonal projectors Qif = Æf, uiæui, we obtain a class of linear operators
A ¼
X9
i¼1

kiQi;
which satisfy the required conditions (i) to (v) under certain conditions on the eigenvalues ki. For example,
condition (ii) can be achieved with ki P 0 while (i) follows from the fact that each Qi is self-adjoint. Since
each ui is either odd or even, the subspaces of odd and even functions are invariant subspaces of A and
hence AS+ = S+A. The condition (iv) on the kernel of A follows with k1 = k2 = k3 = 0 and, in view of
the fact that �f * can be expressed in terms of u4,u5, we set k4 ¼ k5 ¼ c2sm in order to satisfy (v). Altogether,
the conditions on A hold with
k1 ¼ k2 ¼ k3 ¼ 0;

k4 ¼ k5 ¼ c2sm;

k6; . . . ; k9 > 0.
Appendix C. Three-dimensional models

For the models D3Q15 and D3Q19, details about velocities ci and weights f �
i can be found, for example,

in [36]. In each case, we have j = 1 and c2s ¼ 1=3 so that the equilibrium distribution has the same structure
as in the previous section. Using the orthogonal polynomials for these models presented in [11], we can
again set up A using the orthogonal projections. With the numbering of the polynomials given in [11],
we have to set
k0 ¼ k3 ¼ k5 ¼ k7 ¼ 0;

k9 ¼ � � � ¼ k13 ¼ c2sm;

k1; k2; k4; k6; k8; k14 > 0
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for the D3Q15 model, and
k0 ¼ k3 ¼ k5 ¼ k7 ¼ 0;

k9 ¼ � � � ¼ k15 ¼ c2sm;

k1; k2; k4; k6; k8; k16; k17; k18 > 0
in the D3Q19 case.
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